The Effect of Adjacent Heteroatorns (groups) on the Magnitude of Jgem

By R. **DAVIES** and J. HUDEC*

(Chemistry Department, The University, Southampton SO9 5NH)

Summary Empirical relationships have been derived for the variation of J_{gem} with respect to the orientation of the lone pairs on the adjacent oxygen and sulphur atoms; a similar relationship has been obtained for a sulphone group but a different one for a sulphoxide group.

IT was predicted1 on the basis of MO theory that *Jgem* should become more positive when a heteroatom attached to the methylene group can withdraw inductively electrons from the ψ_1 orbital of the methylene and back donate them from the lone pair(s) into the ψ_2 orbital. The latter effect should be dependent on the dihedral angle, θ , between the lone pair(s) and one of the hydrogens; it should be at maximum when $\theta = 0^{\circ}$. ($\theta = 0^{\circ}$ when the protons of the methylene group are eclipsed with the lone pairs and/ or the S-0 bonds).

FIGURE **¹**

^{**a} The theoretical curve C² could have been "anchored" on our experimental curve A at** $\theta = 90^{\circ}$ **(270°) or 180°. We chose** $\theta = 0^{\circ}$ **</sup>** (360°) because this point represents ΔJ derived from the largest number of compounds.

The experimental verification of this prediction for oxygen (Figure **1,** Curve **A)** and for sulphur (Figure 1, Curve B) satisfactorily reproduces the theoretical conclusions. Indeed a similar shaped curve to oxygen has recently been theoretically derived for methanol2 (Figure **1,** Curve C).

Most of the points forming the curves have been collected from the literature and the data will be published in a full publication. The compounds for the 180° orientation were synthesised for this study; they are all of the type:

The curves A and B show that ΔJ_{gem} is virtually zero at certain values of θ (90° and 270°). This indicates that the dominant factor that controls the magnitude of J_{gem} is the donation of electrons to the antisymmetric bonding orbital ψ_2 , and that the inductive withdrawal from ψ_1 is negligible. This conclusion is supported by values of J_{gem} adjacent to a quaternary nitrogen atom in compounds **(1)3** and **(2)4.** The more positive ΔJ_{gem} produced by adjacent oxygen than by adjacent sulphur is possibly due to the smaller separation between the energy level of a C-H bond and the energy level of an oxygen lone pair in comparison with that of a sulphur lone pair; this enables greater back donation into ψ_2 to take place from oxygen.

The sulphone curve (Figure **1,** Curve D) is qualitatively similar to the oxygen and sulphur curves, but ΔJ_{gem} in certain orientations is negative, suggesting a withdrawal of electrons from the antisymmetric bonding orbital ψ_2 . There may be some compensating back-donation from the oxygen atoms, especially at $\theta = 180^{\circ}$.

Probably the most interesting relationship in the change of J_{gem} is due to the adjacent sulphoxide group (Figure 2,

FIGURE 2

The direction of rotation for the unsymmetrical sulphoxide group is such that the lone **pair** bisects the adjacent methylene protons when θ =60°.

Curve E). The asymmetry of the group can be seen from the curve, which has no symmetry about 180°, whereas curves **A,** B, and D in Figure **1** are all symmetrical about 180°. The values of ΔJ_{gem} indicate both electron donation to ψ_2 in certain orientations by the single lone pair, and electron withdrawal from the same orbital by the sulphuroxygen bond.? In fact, a curve similar in shape (Figure **2,** Curve F) can be constructed from two curves; one that resembles the curve obtained for a bromine atom attached to an adjacent carbon atom⁵ (negative ΔJ_{gem} , Figure 2, Curve G) and the other a reflection of this same curve displaced by 120° (positive Δf_{gem} , Figure 2, Curve H). A similarly shaped curve to the latter has recently been derived for the angular contribution of the lone pair on nitrogen.

† This might possibly be accomplished by using the partially vacant orthogonal π -orbital on sulphur or the σ^* -orbital of the sulphuroxygen bond.

The J_{gem} of various cyclic systems incorporating the above groups X can be calculated by adding the Δ J_{gem} to the appropriate Jgem of the carbocyclic system, *e.g.* cycloabove groups Λ can be calculated by adding the Δ J gem to
the appropriate J_{gem} of the carbocyclic system, e.g. cyclo-
butane J_{gem} = $\frac{11.0 \text{ Hz}}{25.0 \text{ Hz}}$, cyclopentane and cyclohexane the appropriate J_{gem}
butane $J_{\text{gem}} = -1$
 $J_{\text{gem}} = -13.0$ Hz.

The measurements were performed in CDCl₃ on a Varian HA100 instrument equipped with an external frequency sweep oscillator.

We thank Miss Joan Ashford for the measurements.

(Received, September 6th, 1971; *Corn.* 1551.)

-
- ¹ J. A. Pople and A. A. Bothner-By. *J. Chem. Phys.*, 1965, 42, 1339.
² G. E. Maciel, J. W. McIver, jun., N. S. Ostlund, and J. A. Pople, *J. Amer. Chem. Soc.*, 1970, 92, 4151.
³ R. J. Abraham and G. Gatti, *J. Chem.*
-
-
-
-